使用帶有交叉驗證的網格搜索進行參數估計?
此案例顯示了如何通過交叉驗證來優化分類器。交叉驗證是通過在開發集上(development set)使用sklearn.model_selection.GridSearchCV對象完成的,開發集是已有標簽的數據集的一半數據。
然后,在模型選擇步驟中未使用的是評估集(evalution set),我們在評估集上測量所選超參數和訓練后模型的性能。
之后,在模型選擇步驟中未使用的數據是評估集evalutiaon上測量所選超參數和訓練后模型的性能。
有關可用于模型選擇的工具的更多詳細信息,請參見交叉驗證:評估估計器性能和調整估計器的超參數部分。
輸出:
# Tuning hyper-parameters for precision
Best parameters set found on development set:
{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
Grid scores on development set:
0.986 (+/-0.016) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
0.959 (+/-0.028) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.017) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
0.982 (+/-0.026) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.017) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
0.983 (+/-0.026) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.017) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
0.983 (+/-0.026) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
0.974 (+/-0.012) for {'C': 1, 'kernel': 'linear'}
0.974 (+/-0.012) for {'C': 10, 'kernel': 'linear'}
0.974 (+/-0.012) for {'C': 100, 'kernel': 'linear'}
0.974 (+/-0.012) for {'C': 1000, 'kernel': 'linear'}
Detailed classification report:
The model is trained on the full development set.
The scores are computed on the full evaluation set.
precision recall f1-score support
0 1.00 1.00 1.00 89
1 0.97 1.00 0.98 90
2 0.99 0.98 0.98 92
3 1.00 0.99 0.99 93
4 1.00 1.00 1.00 76
5 0.99 0.98 0.99 108
6 0.99 1.00 0.99 89
7 0.99 1.00 0.99 78
8 1.00 0.98 0.99 92
9 0.99 0.99 0.99 92
accuracy 0.99 899
macro avg 0.99 0.99 0.99 899
weighted avg 0.99 0.99 0.99 899
# Tuning hyper-parameters for recall
Best parameters set found on development set:
{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
Grid scores on development set:
0.986 (+/-0.019) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
0.957 (+/-0.028) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
0.987 (+/-0.019) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
0.981 (+/-0.028) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
0.987 (+/-0.019) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
0.982 (+/-0.026) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
0.987 (+/-0.019) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
0.982 (+/-0.026) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
0.971 (+/-0.010) for {'C': 1, 'kernel': 'linear'}
0.971 (+/-0.010) for {'C': 10, 'kernel': 'linear'}
0.971 (+/-0.010) for {'C': 100, 'kernel': 'linear'}
0.971 (+/-0.010) for {'C': 1000, 'kernel': 'linear'}
Detailed classification report:
The model is trained on the full development set.
The scores are computed on the full evaluation set.
precision recall f1-score support
0 1.00 1.00 1.00 89
1 0.97 1.00 0.98 90
2 0.99 0.98 0.98 92
3 1.00 0.99 0.99 93
4 1.00 1.00 1.00 76
5 0.99 0.98 0.99 108
6 0.99 1.00 0.99 89
7 0.99 1.00 0.99 78
8 1.00 0.98 0.99 92
9 0.99 0.99 0.99 92
accuracy 0.99 899
macro avg 0.99 0.99 0.99 899
weighted avg 0.99 0.99 0.99 899
(譯者注:輸出中的英文為打印內容,是由代碼中打印的英文所致,故不進行翻譯)
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC
print(__doc__)
# 導入數據集
digits = datasets.load_digits()
# 要將分類器應用于此數據,我們需要將圖像拉平(譯者注:即降維),以將數據轉換為(樣本,特征)結構的矩陣:
n_samples = len(digits.images)
X = digits.images.reshape((n_samples, -1))
y = digits.target
# 將數據集分割為兩個等大的部分
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.5, random_state=0)
# 使用交叉驗證設置參數
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
'C': [1, 10, 100, 1000]},
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
scores = ['precision', 'recall']
for score in scores:
print("# Tuning hyper-parameters for %s" % score)
print()
clf = GridSearchCV(
SVC(), tuned_parameters, scoring='%s_macro' % score
)
clf.fit(X_train, y_train)
print("Best parameters set found on development set:")
print()
print(clf.best_params_)
print()
print("Grid scores on development set:")
print()
means = clf.cv_results_['mean_test_score']
stds = clf.cv_results_['std_test_score']
for mean, std, params in zip(means, stds, clf.cv_results_['params']):
print("%0.3f (+/-%0.03f) for %r"
% (mean, std * 2, params))
print()
print("Detailed classification report:")
print()
print("The model is trained on the full development set.")
print("The scores are computed on the full evaluation set.")
print()
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))
print()
# 請注意,這個問題太容易了:超參數平穩段太平坦了,并且輸出模型對于精度和召回率都具有相同的預測質量。
腳本的總運行時間:(0分鐘5.437秒)