光譜集群算法的一個示例?
注意 單擊此處下載完整的示例代碼,或通過Binder在瀏覽器中運行此示例
此示例演示如何使用光譜集群算法生成棋盤數據集和集群。
數據由 make_checkerboard
函數生成,然后進行洗牌,并傳遞給光譜集群算法。對打亂的矩陣的行和列進行重新排列,以顯示算法找到集群。
行和列標簽向量的外積顯示了棋盤結構的表示。




consensus score: 1.0
print(__doc__)
# Author: Kemal Eren <kemal@kemaleren.com>
# License: BSD 3 clause
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import make_checkerboard
from sklearn.cluster import SpectralBiclustering
from sklearn.metrics import consensus_score
n_clusters = (4, 3)
data, rows, columns = make_checkerboard(
shape=(300, 300), n_clusters=n_clusters, noise=10,
shuffle=False, random_state=0)
plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Original dataset")
# shuffle clusters
rng = np.random.RandomState(0)
row_idx = rng.permutation(data.shape[0])
col_idx = rng.permutation(data.shape[1])
data = data[row_idx][:, col_idx]
plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Shuffled dataset")
model = SpectralBiclustering(n_clusters=n_clusters, method='log',
random_state=0)
model.fit(data)
score = consensus_score(model.biclusters_,
(rows[:, row_idx], columns[:, col_idx]))
print("consensus score: {:.1f}".format(score))
fit_data = data[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]
plt.matshow(fit_data, cmap=plt.cm.Blues)
plt.title("After biclustering; rearranged to show biclusters")
plt.matshow(np.outer(np.sort(model.row_labels_) + 1,
np.sort(model.column_labels_) + 1),
cmap=plt.cm.Blues)
plt.title("Checkerboard structure of rearranged data")
plt.show()
腳本的總運行時間:(0分鐘0.682秒)