壓縮估算器表示?

此案例說明了print_changed_only全局參數的用法。

將print_changed_only設置為True,估算器會交替顯示,因此,僅僅已設置為非默認值的參數會被展現。這可以實現更緊湊地成果表現。

輸出:

Default representation:
LogisticRegression(penalty='l1')

With changed_only option:
LogisticRegression(penalty='l1')

輸入:

print(__doc__)

from sklearn.linear_model import LogisticRegression
from sklearn import set_config


lr = LogisticRegression(penalty='l1')
print('Default representation:')
print(lr)
# LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
#                    intercept_scaling=1, l1_ratio=None, max_iter=100,
#                    multi_class='auto', n_jobs=None, penalty='l1',
#                    random_state=None, solver='warn', tol=0.0001, verbose=0,
#                    warm_start=False)

set_config(print_changed_only=True)
print('\nWith changed_only option:')
print(lr)
# LogisticRegression(penalty='l1')

腳本的總運行時間:0分0.003秒。