處理平局的支持向量機?
(譯者注:支持向量機依靠決策邊界來進行分類,當一個點更靠近某條決策邊界,這個點就更可能被分到這個決策邊界所代表的那一類。但會存在一些點,位于邊際的中間,即到兩個決策邊界的距離是一致的,此時這個點的狀況就會被叫做“平局”)
如果decision_function_shape的值是'ovr',則打破平局的計算代價是高的,因此默認情況下不啟用ovr選項。此示例說明了break_ties參數對多類分類問題和Decision_function_shape ='ovr'的影響。
這兩個圖像的區別僅在于類別被綁在一起的中間區域。如果break_ties = False,則該區域中的所有輸入將歸為一類,而如果break_ties = True,則平局決勝機制將在該區域中創建非凸決策邊界。

輸入:
print(__doc__)
# 代碼來源: Andreas Mueller, Adrin Jalali
# 執照: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.datasets import make_blobs
X, y = make_blobs(random_state=27)
fig, sub = plt.subplots(2, 1, figsize=(5, 8))
titles = ("break_ties = False",
"break_ties = True")
for break_ties, title, ax in zip((False, True), titles, sub.flatten()):
svm = SVC(kernel="linear", C=1, break_ties=break_ties,
decision_function_shape='ovr').fit(X, y)
xlim = [X[:, 0].min(), X[:, 0].max()]
ylim = [X[:, 1].min(), X[:, 1].max()]
xs = np.linspace(xlim[0], xlim[1], 1000)
ys = np.linspace(ylim[0], ylim[1], 1000)
xx, yy = np.meshgrid(xs, ys)
pred = svm.predict(np.c_[xx.ravel(), yy.ravel()])
colors = [plt.cm.Accent(i) for i in [0, 4, 7]]
points = ax.scatter(X[:, 0], X[:, 1], c=y, cmap="Accent")
classes = [(0, 1), (0, 2), (1, 2)]
line = np.linspace(X[:, 1].min() - 5, X[:, 1].max() + 5)
ax.imshow(-pred.reshape(xx.shape), cmap="Accent", alpha=.2,
extent=(xlim[0], xlim[1], ylim[1], ylim[0]))
for coef, intercept, col in zip(svm.coef_, svm.intercept_, classes):
line2 = -(line * coef[1] + intercept) / coef[0]
ax.plot(line2, line, "-", c=colors[col[0]])
ax.plot(line2, line, "--", c=colors[col[1]])
ax.set_xlim(xlim)
ax.set_ylim(ylim)
ax.set_title(title)
ax.set_aspect("equal")
plt.show()
腳本的總運行時間:(0分鐘1.077秒)